[是 VIDYAPEETH AGADEMY

Head Office: 2nd Floor, Grand Plaza, Fraser Road, Dak Bunglow, Patna - 01
JEE Main 2023 (Memory based)
31 January 2023 - Shift 1
Answer \& Solutions
CHEMISTRY

1. Melting point order of

A

B

C
A. $A>B>C$
B. $C>A>B$
C. $B>A>C$
D. $A>C>B$

Answer (A)

Solution:

$M . P=323 \mathrm{~K} \quad$ M. $\mathrm{P}=256 \mathrm{~K} \quad$ M. $\mathrm{P}=244 \mathrm{~K}$
2. Consider the following sequence of reaction:

The Product ' P ' is ?
A.

B.

C.

Answer (B)

Solution:

3. A detergent is dissolved in non-polar solvent. The structure of micelle in non-polar solvent is
A.

B.

$\left\{\begin{array}{lll}9 & \} \\ \} & \} & \\ \hline\end{array}\right.$

\{ $\left\{\begin{array}{lll} & \{ & \} \\ \delta & \delta\end{array}\right.$
D. $\begin{cases}\{ & \{ \\ \delta & \} \\ \delta\end{cases}$

Answer (A)

Solution:

In non-polar solvent, the non-polar part will be outside.
4. When phenol reacts with $B r_{2}$ in low polarity solvent, it produces a major product \qquad ?
A.

B.

D.

Answer (C)

Solution:

5. The oxidation state of Phosphorus atom in hypophosporic acid is \qquad ?

Answer (4)

Solution:

The hypophosphoric acid is:

6. Electronic configuration of Nd^{2+} is
A. $4 f^{2}$
B. $4 f^{3}$
C. $4 f^{4}$
D. $4 f^{5}$

Answer (C)

Solution:

$\mathrm{Nd}^{2+}=[\mathrm{Xe}] 4 \mathrm{f}^{4}$
7. Following values of K (Rate constants) are given at different temperatures. Find out the activation energy (E_{a}). Given:
$\mathrm{T}=200 \mathrm{~K} \rightarrow \mathrm{~K}_{1}=0.03$
$\mathrm{T}=300 \mathrm{~K} \rightarrow \mathrm{~K}_{2}=0.05$
A. 2.548 KJ
B. 11.488 KJ
C. 1.106 KJ
D. 51.437 KJ

Answer (A)

Solution:

$$
\begin{aligned}
\log \frac{0.05}{0.03} & =\frac{E_{a}}{2.303 \times 8.314} \times\left(\frac{1}{200}-\frac{1}{300}\right) \\
& =\frac{E_{a}}{2.303 \times 8.314} \times\left(\frac{1}{600}\right)
\end{aligned} E_{a}=2.548 \mathrm{KJ}
$$

8. Basic strength of oxides of V :
$\mathrm{V}_{2} \mathrm{O}_{3} \mathrm{~V}_{2} \mathrm{O}_{5} \mathrm{~V}_{2} \mathrm{O}_{4}$
A. $\mathrm{V}_{2} \mathrm{O}_{3}<\mathrm{V}_{2} \mathrm{O}_{5}<\mathrm{V}_{2} \mathrm{O}_{4}$
B. $\mathrm{V}_{2} \mathrm{O}_{3}<\mathrm{V}_{2} \mathrm{O}_{4}<\mathrm{V}_{2} \mathrm{O}_{5}$
C. $\mathrm{V}_{2} \mathrm{O}_{3}>\mathrm{V}_{2} \mathrm{O}_{4}>\mathrm{V}_{2} \mathrm{O}_{5}$
D. $\mathrm{V}_{2} \mathrm{O}_{3}=\mathrm{V}_{2} \mathrm{O}_{5}=\mathrm{V}_{2} \mathrm{O}_{4}$

Answer (C)

Solution:

As oxidation state of V increases then its acidic nature increases. So, the correct basic order is $\mathrm{V}_{2} \mathrm{O}_{3}>\mathrm{V}_{2} \mathrm{O}_{4}>\mathrm{V}_{2} \mathrm{O}_{5}$
9. Choose the correct information regarding the products obtained on electrolysis of brine solution.
A. Cl_{2} at cathode
B. O_{2} at cathode
C. H_{2} at cathode
D. OH^{-}at cathode

Answer (C)

Solution:

At anode
$2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 e^{-}$

At cathode
$2 e^{-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}$
Net reaction
$2 \mathrm{Cl}^{-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cl}_{2}+\mathrm{H}_{2}+2 \mathrm{OH}^{-}$
10. Consider the following reaction
$\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{SO}_{3}(g)$
If $K_{p}=2 \times 10^{12}$ and $K_{c}=x \times 10^{13}$, the value of x in terms of $R T$ will be
A. $\frac{\sqrt{R T}}{4}$
B. $\frac{\sqrt{R T}}{5}$
C. $\frac{\sqrt{R T}}{10}$
D. $10 \sqrt{R T}$

Answer (B)

Solution:

$K_{P}=K_{C} \times(R T)^{\frac{-1}{2}}$
$2 \times 10^{12}=x \times 10^{13} \times(R T)^{\frac{-1}{2}}$
$x=\frac{2 \times 10^{12}}{10^{13} \times(R T)^{\frac{-1}{2}}}=\frac{2 \sqrt{R T}}{10}=\frac{\sqrt{R T}}{5}$
11. Arrange the following ions in the increasing order of their ionic radii.
$\mathrm{S}^{2-}, \mathrm{Cl}^{-}, \mathrm{K}^{+}$and Ca^{2+}
A. $\mathrm{S}^{2-}<\mathrm{Cl}^{-}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}$
B. $\mathrm{Cl}^{-}<\mathrm{S}^{2-}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}$
C. $\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Cl}^{-}<\mathrm{S}^{2-}$
D. $\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{Cl}^{-}<\mathrm{S}^{2-}$

Answer (D)

Solution:

The given ionic species are isoelectronic species. The radii of isoelectronic ionic species increases as the atomic charge of ion decreases. Therefore, the correct increasing order of radii of ionic species is $\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{Cl}^{-}<\mathrm{S}^{2-}$
12. Which of the following options contains the compound which has highest sweetening value?
A. Aspartame
B. Saccharin
C. Sucralose
D. Alitame

Answer (D)

Solution:

Sweetener	Sweetening Value
Aspartame	100
Saccharin	550
Sucralose	600
Alitame	2000

Alitame has the highest sweetening value.
13. Which of the following method is not a concentration of ore?
A. Electrolysis
B. Leaching
C. Froth flotation
D. Hydraulic washing

Answer (A)

Solution:

The following methods are commonly used for concentration of ore

1. Hydraulic washing
2. Leaching
3. Froth floatation
4. Magnetic separation

But Electrolysis is used for refining of the crude metal.
14. A complex compound of $\mathrm{CO}(\mathrm{X})$ is pink colour in water. On reaction with conc. HCl forms (Y) of deep blue colour and has geometry (Z). Identify $(X),(Y)$ and (Z).
A. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{CoCl}_{6}\right]^{3-}$, Octahedral
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},[\mathrm{CoCl} 4]^{2-}$, Tetrahedral
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},[\mathrm{CoCl} 4]^{2-}$, Tetrahedral
D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{CoCl}_{6}\right]^{3-}$, Octahedral

Answer (C)

Solution:

Co^{2+} ions in aqueous medium are pink in colour. On addition of conc. HCl , the solution becomes blue due to formation of $\left[\mathrm{CoCl}_{4}\right]^{2-}$ which is tetrahedral.
$\mathrm{Co}^{2+}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
Here, X is $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ which is pink in colour.
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{HCl} \rightarrow\left[\mathrm{CoCl}_{4}\right]^{2-}+4 \mathrm{H}^{+}+6 \mathrm{H}_{2} \mathrm{O}$
Here, Y is $\left[\mathrm{CoCl}_{4}\right]^{2-}$ which is blue in colour and tetrahedral in structure.
15. Consider the following reaction.
$\mathrm{ClO}(\mathrm{g})+\mathrm{NO}_{2} \rightarrow A \xrightarrow{\mathrm{H}_{2} \mathrm{O}(\mathrm{g})} \mathrm{B}+\mathrm{C}$
A, B and C are respectively.
A. $\mathrm{ClONO}_{2}(\mathrm{~g}) ; \mathrm{HOCl}(\mathrm{g}) ; \mathrm{HNO}_{3}(\mathrm{~g})$
B. $\mathrm{ClONO}_{2}(g) ; \mathrm{HOCl}(\mathrm{g}) ; \mathrm{NO}_{2}(\mathrm{~g})$
C. $\mathrm{ClNO}_{2}(g) ; \mathrm{HCl} ; \mathrm{Cl}_{2}$
D. $\mathrm{ClNO}_{2}(\mathrm{~g}) ; \mathrm{HCl} ; \mathrm{HNO}_{3}(\mathrm{~g})$

Answer (A)

Solution:

$\mathrm{ClO}(g)+\mathrm{NO}_{2}(g) \rightarrow \mathrm{ClONO}_{2}(g)$
$\mathrm{ClONO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow \mathrm{HOCl}(\mathrm{g})+\mathrm{HNO}_{3}(g)$
Hence, the correct answer is option (A).
16. $\mathrm{Cu}^{2+}+\mathrm{I}^{-} \rightarrow A \rightarrow B+C$

Find B and C
A. $I_{2}, C u_{2} I_{2}$
B. $C u_{2} I_{4}$
C. CuI_{3}^{-}
D. I^{-}, CuI_{2}

Answer (A)

Solution:

$\mathrm{Cu}^{2+}+\mathrm{I}^{-} \rightarrow\left[\mathrm{CuI}_{2}\right] \rightarrow \frac{1}{2} \mathrm{Cu}_{2} \mathrm{I}_{2}+\frac{1}{2} \mathrm{I}_{2}$
(A)
(B)
(C)

Products (B) and (C) are $C u_{2} I_{2}$ and I_{2} respectively
17. $\mathrm{XeF}_{4}, \mathrm{SF}_{4}$ and BrCl_{3} show hybridisations respectively
A. $s p^{3}, s p^{3}, s p^{3}$
B. $d s p^{2}, s p^{3}, s p^{3}$
C. $s p^{3} d^{2}, s p^{3} d, s p^{3} d$
D. $d^{2} s p^{2}, s p^{3} d, s p^{3} d$

Answer (C)

Solution:

18. In which of the following reaction, $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as a reducing agent.
A. $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Mn}^{2+} \rightarrow \mathrm{MnO}_{2}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{NaOCl}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{NaCl}+\mathrm{O}_{2}$
C. $\mathrm{Fe}^{2+}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{PbS}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{PbSO}_{4}+\mathrm{H}_{2} \mathrm{O}$

Answer (B)

Solution:

In option (B), oxidation of $\mathrm{H}_{2} \mathrm{O}_{2}$ is taking place and hence $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as a reducing agent.
19. Which of the following transition emits the same wavelength as that for $(\mathrm{n}=4 \rightarrow \mathrm{n}=2)$ for He^{+}ion
A. $H(n=3 \rightarrow n=1)$
B. $\mathrm{H}(\mathrm{n}=2 \rightarrow \mathrm{n}=1)$
C. $H^{2+}(\mathrm{n}=4 \rightarrow \mathrm{n}=3)$
D. $H e^{+}(\mathrm{n}=6 \rightarrow \mathrm{n}=3)$

Answer (B)

Solution:

$\frac{1}{\lambda}=\frac{R Z^{2}}{h c}\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right)$
For $\mathrm{He}{ }^{+}$ion, $(\mathrm{n}=4 \rightarrow \mathrm{n}=2)$
$\frac{1}{\lambda_{H e^{+}}}=\frac{R 2^{2}}{h c}\left(\frac{1}{2^{2}}-\frac{1}{4^{2}}\right)=\frac{R X 4}{h c}\left(\frac{1}{4}-\frac{1}{16}\right)=\frac{3 R}{4 h c}$
For H ion, $(\mathrm{n}=2 \rightarrow \mathrm{n}=1)$
$\frac{1}{\lambda_{H}}=\frac{R 1^{2}}{h c}\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)=\frac{R}{h c}\left(\frac{1}{1}-\frac{1}{4}\right)=\frac{3 R}{4 h c}$
20. Which of the following option contains the correct match?

List - I	List - II
A. XeF $_{4}$	(P) T- shape
B. SF	(Q) See-saw
C. NH $_{4}{ }^{+}$	(R) Square planar
D. BrF $_{3}$	(S) Tetrahedral

A. $A \rightarrow P, B \rightarrow Q, C \rightarrow R, D \rightarrow S$
B. $A \rightarrow R, B \rightarrow Q, C \rightarrow S, D \rightarrow P$
C. $A \rightarrow Q, B \rightarrow P, C \rightarrow S, D \rightarrow R$
D. $A \rightarrow S, B \rightarrow R, C \rightarrow P, D \rightarrow Q$

Answer (B)

Solution:

Molecule	Number of lone pairs	Number of sigma bonds	Shape
XeF_{4}	2	4	Square Planar

SF_{4}	1	4	See - saw
$\mathrm{NH}_{4}{ }^{+}$	0	4	Tetrahedral
BrF_{3}	2	3	T- shape

21. 2.56 g of a non-electrolyte solute is dissolved in one litre of a solution, it has osmotic pressure equal to 4 bar at 300 K temperature. Then, find the molar mass of the compound.
Given, $R=0.083$ bar, round off to the nearest integer

Answer (16)

Solution:

$$
\begin{aligned}
& \Pi=\text { CRT } \\
& \begin{aligned}
4 & =\frac{2.56}{M} \times 0.083 \times 300 \\
M & =\frac{2.56}{4} \times 0.083 \times 300 \\
& =16 \mathrm{~g}
\end{aligned}
\end{aligned}
$$

22. Weight of an organic compound is 0.492 g . When the hydrocarbon undergoes combustion, it produces 0.792 g of CO_{2}. Find the \% of carbon in the given hydrocarbon. (Round off to nearest integer)

Answer (44)

Solution:

$$
\text { \%Carbon }=\frac{M W_{C}}{M W_{C O_{2}}} X \frac{W_{C O_{2}}}{W} X 100
$$

$M W_{C}$ - Molecular weight of Carbon
$\mathrm{MW}_{\mathrm{CO}_{2}}$ - Molecular weight of CO_{2}
$W_{\mathrm{CO}_{2}}$ - Weight of CO_{2} produced
W - Weight of the organic compound

$$
\begin{aligned}
& =\frac{12}{44} \times \frac{0.792}{0.492} \times 100 \\
& =43.90 \%
\end{aligned}
$$

23. What is the volume of hydrogen gas produced (lit) when 11.2 g of Zn metal reacts with excess of dil. HCl . (Closest integer)

Given, Molar volume of $\mathrm{H}_{2}=22.7 \mathrm{~L} / \mathrm{mol}$, Molar mass of $\mathrm{Zn}=65 \mathrm{~g} / \mathrm{mol}$

Answer (4)

Solution:

$\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
Weight of the $\mathrm{Zn}=11.2 \mathrm{~g}$
From the equation, one mole of Zn i.e 65 g produces one mole of H_{2} i.e 22.7 L

Therefore, volume of H_{2} produced by 11.2 g of Zn

$$
\begin{aligned}
& =\frac{11.2}{65} \times 22.7 \mathrm{~L} \\
& =3.911 \mathrm{~L} \approx 4 \mathrm{~L}
\end{aligned}
$$

24. The value of logarithms of the equilibrium constant of the following reaction is $\frac{X}{3}$. Then X is ? $P d^{2+}+4 \mathrm{Cl}^{-} \leftrightarrow \mathrm{PdCl}_{4}^{2-}$
Given : $\left[P d^{2+}+2 e^{-} \rightarrow P d \quad E^{o}=0.83 \mathrm{~V}\right.$
$P d C l_{4}^{2-}+2 e^{-} \rightarrow P d+4 \mathrm{Cl}^{-} \quad E^{o}=0.63 \mathrm{~V}$ and $\left.2.303 \frac{R T}{F}=0.06\right]$

Answer (20)

Solution:

From Nernst Equation,

$$
\begin{aligned}
& E_{\text {cell }}=E_{\text {cell }}^{o}-2.303 \frac{R T}{n F} \log Q \\
& Q-\text { Reaction quotient }
\end{aligned}
$$

At equilibrium,

$$
E_{\text {cell }}=0 \text { and } Q=K_{\text {eq }}
$$

$\Rightarrow, E_{\text {cell }}^{o}=2.303 \frac{\boldsymbol{R T}}{\boldsymbol{n F}} \log K_{\text {eq }}-----(1)$
Given, $\mathrm{Pd}^{2+}+2 e^{-} \rightarrow P d \quad E^{o}=0.83 \mathrm{~V}$
$\mathrm{PdCl}_{4}^{2-}+2 e^{-} \rightarrow \mathrm{Pd}+4 \mathrm{Cl}^{-} \quad E^{o}=0.63 \mathrm{~V}$
Net reaction is,
$\mathrm{Pd}^{2+}+4 \mathrm{Cl}^{-} \leftrightarrow \mathrm{PdCl}_{4}^{2-}$
From the above reactions,

$$
\begin{aligned}
& \boldsymbol{E}_{\text {cell }}^{o}=\boldsymbol{E}_{P d^{2+} / P d}^{o}+\boldsymbol{E}_{P d / P d C l l_{4}^{2-}}^{o} \\
& =0.83-0.63=0.20 \mathrm{~V}
\end{aligned}
$$

Putting values in eqn (1)

$$
\begin{aligned}
& 0.20=\frac{0.06}{2} \frac{x}{3} \\
& x=\frac{0.20 \times 6}{0.06}=20
\end{aligned}
$$

25. Find the value $|\Delta H|$ in KJ for

$$
\begin{aligned}
& \frac{1}{2} \mathrm{Cl}_{2}(g) \rightarrow \mathrm{Cl}^{-}(\mathrm{aq}) \\
& \text { Given }:\left[\Delta \mathrm{H}_{\text {diss }} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}(\mathrm{~g}) \quad 240 \mathrm{~kJ} / \mathrm{mol}^{-1}\right. \\
& \Delta \mathrm{H}_{\text {eg }} \mathrm{Cl}(\mathrm{~g})+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}(\mathrm{g}) \quad-320 \mathrm{~kJ} / \mathrm{mol}^{-1} \\
& \left.\Delta H_{\text {hydration }} \mathrm{Cl}^{-}(\mathrm{g})+a q \rightarrow \mathrm{Cl}^{-}(\mathrm{aq}) \quad-340 \mathrm{~kJ} / \mathrm{mol}^{-1}\right]
\end{aligned}
$$

Answer (540)

Solution:

$\frac{1}{2} \mathrm{Cl}_{2}(g) \rightarrow \mathrm{Cl}(\mathrm{g}) \quad \Delta H_{1}=\frac{240}{2}=120 \mathrm{~kJ}$
$\mathrm{Cl}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}(\mathrm{g}) \quad \Delta \mathrm{H}_{2}=-320 \mathrm{~kJ}$
$\mathrm{Cl}^{-}(\mathrm{g})+a q \rightarrow \mathrm{Cl}^{-}(\mathrm{aq}) \quad \Delta \mathrm{H}_{3}=-340 \mathrm{KJ}$

$$
\frac{1}{2} C l_{2}(g)+\mathrm{e}^{-}+\mathrm{aq} \rightarrow C l^{-}(a q)
$$

$$
\begin{aligned}
\Delta H & =\Delta H_{1}+\Delta H_{2}+\Delta H_{3} \\
& =120-320-340 \\
& =-540 \mathrm{~kJ} \\
|\Delta H| & =540 \mathrm{~kJ}
\end{aligned}
$$

